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Eigenvalue Finite Difference Approximations 
for Regular and Singular 
Sturm-Liouville Problems 

By Nabil R. Nassif 

Abstract. This paper includes two parts. In the first part, general error estimates for "stable" 
eigenvalue approximations are obtained. These are practical in the sense that they are based 
on the discretization error of the difference formula over the eigenspace associated with the 
isolated eigenvalue under consideration. Verification of these general estimates are carried out 
on two difference schemes: that of Numerov to solve the Schrbdinger singular equation and 
that of the central difference formula for regular Sturm-Liouville problems. In the second 
part, a sufficient condition for obtaining a "stable" difference scheme is derived. Such a 
condition (condition (N) of Theorem 2.1) leads to a simple "by hand" verification, when one 
selects a difference scheme to compute eigenvalues of a differential operator. This condition is 
checked for one- and two-dimensional problems. 

Introduction. In this work, we are concerned with eigenvalue-eigenvector ap- 
proximation by finite difference methods for differential operators defined on 
functions with bounded or unbounded domains. Our results will be illustrated in 
particular for the Schrbdinger radial operator whose "energy levels" are obtained 
numerically using difference schemes. Let 

(1.1) L[y] = -y" + q(x)y, 0 < x < 00, 

and consider the boundary conditions 

(1.2) B[y] = cy'(O) + dy(O) = 0 

and 
(1.3) y(x) bounded on (0, 0). 

Let xi =ih, O < i < N, xO = O, X=XN = Nh, with limh 0 X =limh ON= o0. 

Optimal error estimates for difference methods will depend on how X(h) and 

N(h) tend to x0. For example (see Corollary 2.1), possible choices for X(h) and 

N(h) are, respectively, m2 and 2mm2, with h = 1/2m. 
The Numerov [8] difference scheme consists in finding Y= (Yi } i < N Xh E R, 

such that 

(-Yi-1 + 2Y, - Yi+;)/h2 +(qi->Y + 10q1Yi + q1?1i?)/12 

= Xh(Y-1 + l0Yi + Yi+?)/12, 

(1.5) Bh[Y] = 0, 
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and 

(1.6) YN = 0. 

Bh is the difference approximation to B. The choice of Bh should be such that its 
discretization error with respect to B has the same order as that of Lh with respect 
to L. When c = 0, d = 1, the choice of Bh is obvious. When c # 0, and in the case 
of Numerov's scheme, one must extend the eigenfunction y(x) on (-2h, 0), and use 
a difference approximation to y'(0) over the points -2h, -h, 0, h, and 2h. It can be 
verified that, YN' YO, and Yk, k < 0, can be eliminated, and the system (1.4)-(1.6) is 
written in the form 

(1.7) -(Lh[yI)i = Xh[Yi] 1 <s i < N - 1, 

where Lh: RN- RNi. 

It is the goal of this paper to present abstract results for the analysis of finite 
difference methods for eigenvalue problems. The results are sufficiently general, 
relatively simple, and easily applicable to specific difference methods, such as (1.7). 
We present stability and convergence estimates involving the "discretization error" 
of the difference formula over the eigenspace associated with the eigenvalue under 
consideration. Our results are similar to those obtained by Vainikko [13] for 
differential operators on bounded domains. The argument used is an adaptation of 
one introduced by Vainikko and used repeatedly by Osborn [10] for compact 
operators and by Descloux, Nassif and Rappaz [4] for Galerkin approximations to 
noncompact operators. It essentially reduces the analysis to that of an algebraic 
eigenvalue problem. Furthermore, our estimates are general in the sense that they 
can be applied to operators with functions of several variables. We should mention 
here results available in the literature. Our results should be compared to the 
approach of Stummel [12] which is based on the development of a very general 
framework for the analysis of a variety of approximation processes. It has been our 
aim to tailor our results to the analysis of difference methods. The results of Kreiss 
[7] are intimately related to the regularity of the solution, while Grigorieff's results 
[6] are concerned with compact operators. 

The theorems of Part 1 depend directly on "stability conditions" (conditions Al 
and A2). In Part 2, we present a general theory based on a condition to be satisfied 
by the discretization error of the difference formula (condition (N) of Theorem 2.1) 
on the set ( f I Lf E Hh }, where Hh is a suitable finite element space. 

In each part we have considered two applications: the Numerov scheme (1.4)-(1.6) 
for the Schrbdinger equation and the three-point central difference scheme for 
regular Sturm-Liouville problems. 

Two-dimensional problems can also be treated. The verification of condition (N) 
for the five-point difference scheme is sketched at the end of Part 2. 

Part 1. Convergence Estimates for Isolated Eigenvalues of Finite Multiplicity. 
1.1. Definition and Results. Let U be a complex Banach space with norm I I and 

t Uh } h a sequence of finite-dimensional spaces with norms I - 
|h* Consider also linear 

operators L: U -- U with D(L) C U, Lh: Uh -, Uh, rh: U -- Uh. For u c D(L), 
we define the discretization error associated with u as 

eh(u) = rhLu - Lhrhu c Uh 
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Let a(L) be the spectrum of L and let A E a(L) be an isolated eigenvalue of finite 
algebraic multiplicity m. Let A be a closed disk with center A and boundary r such 
that A fn a(L) = {A}. Let Ahl.. Ahm(h) be eigenvalues of Lh, repeated accord- 
ing to their algebraic multiplicities and contained in A. We assume that the sequence 
{ Lh } h is such that 

(Al) 3 o > O, such that Ve, O < - < E, h0 such that Vh, h < h0, 

a(Lh)fn{zI|z-XI< E} 

contains exactly m eigenvalues (repeated according to their multiplicities) of Lh. 

Denote these by Ahl 1 *.*, Ah m 
For an operator D, Rz(D) = (z -D)-1 denotes the resolvent operator. We also 

assume: 
(A2) VK, compact sets c '(L), the resolvent set of L, 3h > 0, such that 

Vh < hog K C (Lh), the resolvent set of Lh; furthermore, 3c independent of h such 
that IR,(Lh)Ih -< c, h < ho0 Vz E K. 

For Uh E Uh, Xh and Yh subspaces of Uh, let 

3h (Ubh Zh) inf U| h Zhkh' 
Zh EZh 

h(yhk Zh) SUp [Sh(Yh, Z)], 
Yh'E h 

.YhIh=1 

'k(Yh9 Zh) max[8h(Y , Zh),I h(Zh Yh)]. 

E (2vTi)-lfr R,(L) dz is the spectral projector of L relative to A, and for h small 
enough 

Fh = (2Ti)'f Rz(Lk) dz 

is the spectral projector of Lh relative to {Ahi}, 1 < i < m. E(U) and Fh(Uh) are, 
respectively, the m-dimensional invariant subspaces of L and Lh corresponding, 
respectively, to A and {Ah ,11 h i i n. 

Finally, consider the mapping rhE = rh i E(U): E(U) Uh and let Eh = rhE(U). 
We assume: 

(A3) For h small enough: dim(Eh) = m; 

furthermore, r1E: E(U) -- Eh is a bijection with 

rh UUh SUp rhUh < C1, (rh ) IU = sup (rh )lhu < C2, 
uEE(U) UE=Eh 

1U1=1 'Uhlh 1 

with cl, c2 constants independent of h. 
REMARK 1.1. Note that the assumption on rh is only local, i.e., uniform bounded- 

ness must be satisfied on the invariant subspace E(U) only. 
Finally, let us introduce the quantity 

Yh= sup lrhLu Lkrkulk 
u eE(U) 

IuI=1 

and assume 

(A4) lim h 0oYh 0- 
We now state our results. 
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THEOREM 1.1. There exists a constant c, independent of h, such that 

sh(Fh(Uh), rhE(U)) -< C7Y. 

Eigenvalue estimates are based on the following preliminary argument used by 
Osborn [10] in a different context. 

Introduce the operator Ah = Fhrh I E(U): E(U) -- Fh(Uh). We shall prove that Ah 

is a bijection. Letting L = LI E(U) and Lh =: A7LhAh one can see that these 
operators can be considered in E(U), with L having the eigenvalue X of algebraic 
multiplicity m, and Lh the eigenvalues Xhl, ... ., ' A*,m 

THEOREM 1.2. Under the assumptions (A1)-(A3), there exists a constant c indepen- 
dent of h such that 

IL - Lh E(U) -< CYh 

By the choice of basis in E(U), Theorem 1.2 reduces our original task to a pure 
matrix problem. 

Let f be a holomorphic function defined in the neighborhood of X. Writing f (L), 
f (Lh) in terms of Dunford integrals, one verifies that 

If(L) -f(Lh) |E(U) < CIL Lh IE(U) 

Using the classical properties of traces and determinants, one obtains Theorem 
1.3a, b; Theorem 1.3c, d is a direct application of results quoted in Wilkinson [14, 
pp. 80-81]. Here, a is the ascent of the eigenvalue X of L and /3 the number of 
Jordan blocks of the canonical form of L. 

THEOREM 1.3. There exists a constant c independent of h such that for h small 
enough, 

(a) If(X) - (1/m)EM2lf(Xhsi)l < CYh, 

(b) If "(X) - H f cyM, 
(c) maxl <il<mIX - Xhil < 47h) /, 

(d) minI Im IX - XhiI < c(Yh)fi/m. 

1.2. Proofs. To obtain the above results, we need the following lemmas; throughout, 
c is a generic constant. (A2) leads to 

LEMMA 1.1. There exists h 0 > 0 such that I FhIh < c, Vh < h0. 

Proof. One has for uh e Uh, Iuhlh = 1, 

Fhuh = 2hi J Rz(Lh)uhdZ, 

and by using (A2), with K replaced by r, one obtains, 

IFh Ih < 2 meas(F). a 

LEMMA 1.2. There holds 

sup IrhEhu - Fhrhulh < CYh. 
u E E(U) 

IuI=1 
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Proof. We write 

rhEU-Fhrhu =2i 1 [rhRz(L) - Rz(Lh)rhl udz. 

Now use the following identities, 

ze r': rhRz(L) -RZ(Lh)rh = RZ(Lh)[(Z - Lh)rh - rh(z - L)] Rz(L) 
= RZ(Lh)[rhL - Lhrh]Rz(L), 

to get 

rhEU - Fhrhu = j (2 7Ti)1Rz(Lh)[rhL - Lhrh]Rz(L)udz. 

Clearly, since Rz(L) u E E(U), and using (A2) with K replaced by (r), this implies 

IrhEu - Fhrhulh < (1/2iT)f IRz(Lh) hC-Yh IRZ(L) IJuldz, 

which proves the result. Oi 
Using assumption (A3) and Lemma 1.2, one easily deduces 

LEMMA 1.3. One has 

3h(rhE(U), Fh(Uh)) < Cyh. 

We omit also the proof of the following elementary result. 

LEMMA 1.4. Let Yh and Zh be two subspaces of Uh with the same finite dimension. 
Let Ph: Yh -* Zh be a linear operator such that 

I hYYh Y * j51Yh, y E Uh. 

Then Ph is a bijection and I P,1zI < 21z1, z E Zh. Furthermore, 

sup I Phz z | < 2 sup I PhY Y Ih 
ZEZh YEYh 

Proof of Theorem 1.1. Let Oh = Fh I Eh: Eh -> Fh(Uh) (recall Eh = rhE(U)); for h 
small enough, Eh and Fh(Uh) have the same finite dimension m; on the other hand, 
(A4) implies limOy= 0. Using Lemmas 1.2 and 1.4, 9-1 exists for h small 
enough and is such that 

(1.8) sup 1Y I h < c 
vye Fh(Uh) 
IVh Ih = 

Furthermore, 

sup |hY Y |h < CYh I 
Y E Fh(Uh) 

I.VIh = 

i.e., 8h(Fh(Uh), rhE(U)) < Cyh L 

Proof of Theorem 1.2. Note that 

L - Lh =L- A A-`A L -A AA 

and for u e E(U), using A, = = Ohrh and A`, - (rhE)/1(Oh) 1, we have for 
u E E(U) such that lul = 1, 

Lu = Lhu = A-7[JALu - LhAhu]- 
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From (A3) and (1.8) one sees, that ILu - LhuI < clAhLu - LhAhulh. Note that 

LhAh = LhFhrh= FhLhrh, so that AhLU - LhAhU = FhrhLu - FhLhrhu. Using the 
uniform boundedness of Fh on Uh, we obtain immediately our result. U 

Remark 1.2. Note that the estimates depend solely on the discretization error of 
the difference scheme over the invariant subspace, i.e., Yh 

Remark 13. In the selfadjoint case, since a = 1 and /3 = m, note from Theorem 
1.3(b) and (c) that every eigenvalue Xhi, converges to X with the same rate. This can 
be checked by a simple algebraic manipulation which we omit here (see [5]). 

1.3. Application to Numerov's Scheme for the Schrbdinger Operator. We let 
U = L2(0, so); Uh = RN-1; on q(x) we make the following assumption: 

(1) q E COO(0, oo) n C[O, O], q -O as x - o, 

(2) a= inf q(x) <0, M = sup Iq(x) 
(Q) ~~~~x E=R+ x E=R+ 

(3) q Lipschitz continuous on (0, co). 

In case of c = 0, d = 1 in (1.2), there exists an infinite sequence { A k } k of isolated 
eigenvalues of multiplicity 1 such that for all k, a < Ak < 0, with limk, 00 Ak = 0. 
Furthermore, each corresponding eigenfunction has exactly k - 1 positive zeros and 
tends exponentially to zero as x -- o. The eigenfunctions are in C'(0, xc). 

Forf E U, set If I = tfo, If(x)I2dx} 1/2, and forfh E Uh, fh = {ffh.,}, set 

{N-1 \1/2 

IfhA h i h hlfh2l 
12 

I =1 

Under the assumptions (Q)(1)-(Q)(3), (Al) and (A2) will be verified in the second 
part of the paper. We turn now to the verification of (A3). For that purpose, 
introduce Hh= = E C(O, X) I 4,(0) = A(X) = 0, 4 linear on (x11, xl), i = 

1,..., N }. Note that Hh is isomorphic to Uh. Furthermore, if h-{ { (XI) I 1 i < 

N - 1}, then there exist two constants c1, c2 independent of h such that 

(1.9) C21 +h h -<- I + -< Cl I h1hs WA E Uh - 

Also, for a function f E C(0, xc) with f(0) = 0, let Ihf E Hh be its interpolant 
satisfying (Ihf )(X1) = f(x1), 1 < i < N - 1. 

We now prove the following 

LEMMA 1.4. Let Ek be the invariant subspace corresponding to the eigenvalue Ak, 

1 < k. Then under the assumptions (Q)(1)-(Q)(2), there exists a sequence E*h } such 
that limh o-h = 0 and 

If- Ihf I<l f h~ 1, f E Ek. 

Proof. We prove the assertion with If l = 1. Choose h sufficiently small so that 
the interval (0, X - h) includes the k - 1 zeros of every eigenfunction; thus, on 
(X - h, oc), f (x), and consequently Ihf, keeps a constant sign. 

We have the trivial inequality 

I f- f 12 < X h [f(x)-(Ihf )(x)]2dx + 2 [f(X)]2 dx. 
0 X-h 
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As f(x) decays exponentially to zero, h is also chosen so that on (X - h, xe), 

If (x)I < ckexp(-dkx), Ck and dk depending on f and Ek only. Since f is CO, it is 
well known that 

(fx 
| [f(x) (Ihf )(x)] 2dx < h2{ 

f 
[ f( )] 2d 

with c independent of h and X. Furthermore, since 

-f"(x) + q(x)f(x) = Xkf(x), 0 < x < xc, 

one obtains, using (Q)(2), 

{fX| h ft~x(Ift)O1|2 dx} < ch2[I XI+ M] 

Turning to the second term, 2fX h If(X)12 dx, it is bounded by Sh = 

2(ck/dk)exp{-2dk(X- h)}. Letting h max{3hc2h4(IXkI + M)2}, we conclude 
the result. O- 

If we write now fh = rhi = { f (xi)}, 1 < i < N - 1, we have the following 

LEMMA 1.5. Let Ek be the invariant subspace corresponding to the eigenvalue Xk, 

1 s k. Let also Ekh = rhEk, and rh,: Ek -* Ekh. Then for h small enough, Ekh and 
rhE satisfy condition (A3). 

Proof. From the identity fh = rh f = rhIh f, and (1.9), we have 

(1.10) C21 fh Ih '4 I < C1 fhA h 

Thus, for If I = 1, using Lemma 1.3, we may write 

C21fh Ih IIhf I If I +If- Ihf I 1 + h, 

thus giving IrhIuu uh< c1. As h is chosen so that (0, X) includes the k - 1 zeros of 
every eigenfunction, one concludes that rhE is bijective and dim(Ek h) = 1. 

Finally, consider fh E Uh such that I fh I h = 1, and f E Ek such that fh = 

from If I < I hf I + If - h f I < I h f I + -hI f I one concludes for h sufficiently small 
(as -h -O 0) that (1 - eh)lf I < I'hf 1. Using again (1.10), one obtains 

|rh )U|U U < C 2 ? 

We turn finally to the estimation of the discretization error over the subspace Ek, 

Yh = SUPf E,; If I = 1 I rh Lf - Lhrh f l h . We have the following 

LEMMA 1.6. Let Ek be the invariant subspace corresponding to the eigenvalue Xk, 
k > 1. Under the assumptions (Q)(1)-(Q)(3), and assuming q', q", q"', q (4) are 
bounded on (0, oc), the following inequality is validfor h sufficiently small: 

Yh < 3h4(Cl + h'-3/2jf(X) I). 
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Proof. We take f such that If l = 1. Let ah = rhLf - Lhrhf E RN-1. Let also Rh 

be the linear transformation in RNi, represented by the tridiagonal matrix 

10 1 
0 

1 10 

12~~~~~~~ 

1 ~ ~ ~ ~ ~~1 

10 1 
0 

1 10 

Note that 

(Rhah) i ( fi- + 101i + f +)/12 + (fi-I 2f, + f + 1)/h 

+ Si N-I(f "(X)/12-f (X)/h2), 1 i < N - 1, 
where Si k is the Kronecker delta. The assumptions on q permit the use of the Taylor 
expansion to obtain 

(Rhah)i = 1if [ | (x x-x;)5f(6)(X) dx + fJ (x - Xi)5f (6)(x dx] 

I (x - X;)f(6)(X) dx + j (x -X)3f 6)(X) dx] 
72[xx 

+ Si, N- If "'(X)112 - f (X)lh 2 

and 

(Rhah), ~ eh4"'2 ~1 2 ~ 1/2 
1/f6) 

(Rhah)i <1 eh4 2 
/ i[( | f(6)(x) | dx) + fi If( x) X dx 

+i ,N- "X/2- X)h (e _7.7 X 10-3). 

This implies 

[ hl| (Rhah) 2] 2eh 4(X f (6)(X) 2dx) + h If f"(X)/12 - f(X)/h 21 

Consider now the equation -f"(x) + q(x)f(x) = Xkf(X); multiplication by f and 
integration from 0 to x yields 

00 00 00 

f f'2(x) dx + J q(x)f 2(x) dx = XkJ f 2(x) dx, 

and therefore I f 1 2 < Mk If 12, where Mk = SuPX e (ooo) I X k - q(x) I. Successive differ- 
entiation of the above equation allows us to obtain If(J)I < AjIf , 2 < j < 6. Since 
If I = 1, one obtains for h sufficiently small 

(N-1 1/2 

{ h(Rhah)i )2 < 2eh4A6 + 2h 5721f(X)|, 

IRhahIh < 2h4(eA6 + h -3/2If(X) ). 

From I Rhah lh ? 3Il h lh one obtains the result. O 
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From the above, one clearly deduces 

COROLLARY 1.1. There exist choices for h, X(h) such that for the system (1.1)-(1.3) 
Numerov's scheme yields a discretization error of order 0(h4) over Ek, the invariant 
subspace corresponding to the eigenvalue Xk. 

Proof. Since If (X) < Ck exp(-dkx) for x sufficiently large, any choice for which 
X(h) = O(h-m), m > 0, will make h-13/21f(X)I bounded as h -O 0. For example, 
h = 1/n, X(h)= n, N(h)= n , is a trivial choice. A more practical one for 
computer use is h = 1/2m, X(h) = m', i > 1, N(h) = 2mm', which also yields the 
required result. 

Remark. In the last choice, note that if one uses i = 1, then h-1372If(X)l -x o as 
h -O 0. 

We state finally a last theorem based on Theorems 1.1 and 1.2. 

THEOREM 1.3. Under the assumptions of Lemma 1.6, for every isolated eigenvalue 
Xk, k > 1, with multiplicity 1 of the operator L in (1.1)-(1.3), the Numerov scheme 
yields a sequence of operators Lh: RN-i> RN-, and a sequence of isolated eigenval- 
ues Xk h of Lh, with the same multiplicity as Xk, such that for some choices of 

{h,X(h)} one has 

IXk - Xksh I < ch 6h(rhEk, Fk h ) < ch 
(Fk h in R is the invariant subspace corresponding to Xkh.) 

1.4. Application to Regular Sturm-Liouville Problems. Consider the eigenvalue 
problem 
(1.11) dx [q(x) dxy + s(x)y = Xp(x)y, a < x < b, 

y(a) = y(b) = 0, 
where 

(Cl) p, q and s are continuous and positive on [a, b]. 

It is well known [9] that under the assumption (Cl) there exists an increasing 
sequence of eigenvalues X1 < X2 < * * * < Xn < ... that approach x, each having 
multiplicity 1. The eigenfunction corresponding to Xn has exactly n - 1 zeros in the 
open interval (a, b). 

Furthermore, we assume sufficient regularity on p, q and s, so that y E C4(a, b); 
for example, 

(C2) q E C3(a, b); p, s E C2(a, b). 

Consider a partition x = a + ih, 0 < i < N, with Nh = b - a, and a discretiza- 
tion of (1.11) based on the central difference formula, 

3h/2Y(x) = (y(x + h/2) -y(x - h/2))/h, 

(1.12) Ah/2(qj8h/2Yi) + Siyi = XhPiYi9 0 < i < N, 

(1.13) YO= YN . 

To abide by our original notation, L and Lh are defined by 

Ly = (-(q(x)y')' + s(x)y)/p(x), 

(LhY), = (-3h/2(qj3h/2Y1) + siy1)jp,, 0 < i < N, 

where Y e RN-i. 
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As in Subsection 1.3, we let U = L2(a, b), Uh = RN-1, with respective norms 

IyI1 
by 12x}12and IYIh (hY} Y E U, YEUh. 

(Al) and (A2) will be verified in the second part of this paper. The verification of 
(A3) is similar to that of the Numerov scheme in Subsection 1.3, i.e., one introduces 
the subspace Hh = {4 E C(a,b)1I(a) = A(b) = 4. ' linear on (xi,xi+1), i = 
0 ... ., N - 1), and obtains analogues of Lemmas 1.4 and 1.5 in the newly intro- 
duced norms. 

Let finally Xk be an isolated eigenvalue of L, with Ek its invariant subspace, and 

Yh = SUP E, IfI l=rhLf- LhrhfIh. The estimation of Yh is based on the formula 

3h/2(qi6h/2Yi) = (q(x)y'(x))' + - 
j (x - xi) Y ) dX 

x 1/2 

(1.14) + q,~72 +1 (x -xi+1/2) y )(x) dx 

+ -l 1/2 | (x - Xi172)3y(4)(X) dx + | 1/2 ( Ay"')'dx, 

which allows us to prove 

LEMMA 1.7. Let Ek be the invariant subspace corresponding to the eigenvalue Xk, 

k > 1. Then under the assumption (C2), the following inequality is valid: 

rhLf L hrhf Ih gj (I(qf')1 + q2 f (4) 2 +I(qf..)12) 
/2 fE Ek, 

with p = infx p (x) and q = supxIq(x)I. 

Proof. We take f e Ek such that If I = 1. Let ah = rhLf - Lhrhf E RN-1. Note 
that 

ahi = (-(q(x)f(X))x=x, + oh/2(qi8h/2fi))/Pi, 0 < i < N. 

Using (1.14), one bounds oh, i as follows: 

1 h2-1/2f1x 2 2(qf')'''1 dx1/2 
JPiI(h,i I Vh 2 

X,1/2 A 

qi + 1/2 j + II f (4)(X) 2 dx}) 

+ q 1/22"2 k (f 'f4) (x)2 Ad 
48+ 7 h2'7 { j ( )jd 

+h2- ( 2 
Xi + 1/2 1 fttt12 d 
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Thus, if q = supxE(a b) Iq(x)I and p = infxE(a b) p W) 

p2hl (i2 <1 14 fXi+ 12 2 
q2 

+ 4 Xi+1 If (4) 2 

Pi IGhi K8-0 nj (qf')"'l dx + 
__ 

- 
f(Wx IdA 

Xi-1/2 

h4 5 xi +1/2 2 

i- 1/2 

and therefore 

2 
1 

h 4211 
L hlah il < 2 -(8 f')"' + f4 I)'4 1 + 57I(6 f) 

which proves our lemma. L 
To obtain final eigenvalue-eigenvector estimates, we note first that, when multiply- 

ing (1.11) by y(x) and integrating by parts from a to b, 

q(x)f dx + s(x)f 
2 

dx = Xk p(x)f 
2 

dx, f (E Ek, 

whicn yieius 

(1.15) qI j2<( sup IXkP f 2=Mlf 2, 
xE(a, b) 

where q is infxE(a b)IqI. Using again (1.11), one bounds I(qf')'I and If"I in terms of 

If l; specifically, 

(1.16) (qf')' < Ml f I (M defined as in (1.15)), 

(1.17) iJ | q =(if I >q = supIqf(x)|) 

Successive differentiation allows us to bound f "', f (4), and (qf ')"' in terms of If I, 
which, together with Lemma 1.7, gives Yh < ch 2, and hence the following theorem. 

THEOREM 1.4. Let Ek be the invariant subspace associated with X k, an eigenvalue of 

the regular Sturm-Liouville operator defined in (1.11). Then under the assumption 

(C2), the three-point central difference formula (1.12)-(1.13) yields a sequence of 

eigenvalues X k, h with corresponding eigenspaces Ek h C RN-1 such that for all h, 

l Xk - 
Xk,h I < ch I ah(rhEk, Fk,h) < ch 

Part 2. A Sufficient Condition for Stability. 
2.1. Definition and Results. In this part we show that conditions (Al) and (A2) 

follow from an analysis of the discretization error of the difference formula over a 
suitable subspace. Specifically, consider the system (1.1)-(1.3), whose eigenvalues are 
approximated using a difference method such as the Numerov scheme, and define 
the sequence of operators { Lx I h by 

(2.1) Lxy = -y" + q(x)y, 0 < x < X, 

(2.2) cy'(0) + dy(0) = 0, 

(2.3) Y(X) = 0. 

Note that (1.7) discretizes (1.1)-(1.3) as well as (2.1)-(2.3). 
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In (1.2) we considered without loss of generality the case c = 0. Let Hh = (4G E 

C(0, X) linear in (xi, xi,1), 0 < i < N - 1, A(0) = A(X) = 0). Let y > 0 be 
such that (-x, 0) E ~(Lx + y), the resolvent set of Lx + y; for every 4 Ee Hh, let 
z = A X4 E C2(0, X) be uniquely defined by 

(Lx + y)z = ,, z(O) = z(X) = O. 

As in Part 1, we introduce the notations 

( J If (X I~d ) 

feL2l(Oc), lfl = {I f 12 +fI)12d2 

Also between 

RN-i 

and Hh we consider the mappings rh: Hh - 

RN-1 

and Ph: 
RN-i-1 Hh, 

where, if 
{wh,,(x)}, 

is the usual "hat" functions basis in Hh, and 
c E R~, , A -PhC = C ?=1 ciwhi(X), and c = rh#. 

We may therefore consider the discrete norms on Hh or RN-i, 

N-1 201/2 

4E, Hh, 1'ih = { hj(rh) 
i 

1/2, 

+ H 1lA 1l 1 A 2 1+ 2} 1/2 

l h shall be used without distinction on Hh and RN-i. One proves the existence of 
two constants c1, c2 independent of h such that 

(2.4) C21 A I < I + Ih < C11 A 1, C211 4 11 < 11 + ||h < C1 I 1 

Furthermore, one has naturally I4,h < II4,Ih' V4 E, Hh. Note that (1.7) as a general 
difference scheme can be easily transformed to a mapping in Hh, by considering the 
mapping PhLhrh: Hh -> Hh. 

Our main result is as follows. 

THEOREM 2.1. Assume the difference operator Lh is selected for the numerical 
approximation of the spectrum of L. If Lh and L satisfy the condition 

(N) lim sup I rhLxz - LhrhzIh = 0, 
h - O 4E=-Hh 

114i 1 
z-Ax4 

then Lh satisfies properties (Al), (A2). 

To prove this theorem, we need to introduce additional notations. Let 
N-1 

[4,,c ] h = ? h(rh)(rh), (: complex conjugate), 
i-=1 

(4,,)h f| (X)P (X) dx + [4,q 0]h9, 4 EHh. 

One then defines the sesquilinear form ah on Hh X Hh by 

ah(4, %) = [Ph(Lh + Y)4 ,] h 

and assumes the existence of constants -y, ry > 0 independent of h such that 
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This allows the use of the Lax-Milgram theorem to define the sequence of operators 
{Bh}h: Hh -- Hh bytherelation ah(Bh4,4)) = [I',4)]hVI', 4 Ee Hh. Notealso that 

(2.6) JlBhA 11h < Cl + 1h, V4 E Hh (c independent of h) . 
The analysis of the spectrum of Lh: RN-1 -- RN-1 is equivalent to the analysis of 
the spectrum of Bh: Hh -> Hh. For condition (Al), this is straightforward; condition 
(A2) is obtained below using 11 1h, but the following lemma shows that this implies 

(A2) in Ih. 

LEMMA 2.1. For h sufficiently small, z = --y and z E ~(Lh) if and only if z1 = 

l/(z + y) E t(Lh). Furthermore, I(Bh - Zl)0 h >? CO!41!h, V4 E Hh (co indepen- 
dent of h) implies I(Lh - z)f h > Clflh, Vf E RN-1 (c independent of h). 

Proof. The first part of this lemma can easily be seen from the identity 

[(PhLhrh - Zl)J 4] h = (z + -y)ah((zl - Bh)4, 4), V4, A E Hh. 

As for the second part, note that for f E RN-, Phf = 4 E Hh, one has 

(Lh - Z)fh = SUp [(PhLhrh - Z)4'4] hl > sup Iah((Bh - Z1)4,,)) 
, Hh 4 E Hh 

bPh=1 bPlh-1 

Taking 4 = (Bh- z1) ,/1(Bh - zl)h, and using (2.5), we get 

I(Lh ZifIh h m?Z ? y II(Bh zl)4II/I(Bh - Zl)JIh 

One then has 

I(Lh - Z)f h > m01Z + Y II(Bh - Z1)J 4Ih > Y0CoLz + Y Ikk li1. 

Using (2.4), one obtains the result. L 
The proof of Theorem 2.1 is based on a perturbation theory result. 

THEOREM 2.2. Let Al Ah: Hh -* Hh be such that 

(p) lim sup ||(Ah - A ) + || = ?- 
h-O pE=Hh 

11411=1 

Then Al satisfies (Al) and (A2) if and only if A2 satisfies (Al) and (A2). 

Proof. Assume Al satisfies (Al) and (A2). 
(i) To show that A2 satisfies (A2), assume there exists { hi } and, correspondingly, 

Al e Hh, 114'AI 1 such that limh> oll(A 2 - 1,)4'j = 0. Note 

(Al -4 < | ((Al > A + (Ah-4 | 

Thus, limh - oll(A, - )+1= - 0 and A , g(Al'), which contradicts (A2) for A1. 
(ii) For (Al), let A be an isolated eigenvalue of finite algebraic multiplicity m, and 

A a disc centered at A, with boundary F such that for all h sufficiently small, A 
contains m eigenvalues of Al (repeated according to their multiplicities) converging 
to A; E 1 = (2 v i) -'r Rz(Al ) dz is the spectral projector corresponding to Al and 
E'(Hh), its invariant subspace. Similarly, E2 = (2ri)-lfr RJA2) dz, and one notes 
that 

(2.7) lim sup ||(El - E7 )4'J| 
= 0. 

h-O 4GHh 

114k= 1 
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This can be seen from the identity 

E- = (27Ti) 1l R,(Al )(A2- Al)RJ(A2) dz 

Using the first part of the theorem and (P), one obtains (2.7). Consider now the 
mapping Eh = El | E( Hh) -* E (Hh). For 4 E Hh such that II4 | = 1, one 
has from (2.7) that limh rolls - Eh2A = 0, which obviously shows that for h 

sufficiently small, Eh2 is infective. Hence dim(E'(Hh)) < dim(E 2(Hh)). A similar 

argument on Eh = Ih | Es(H^) 2 (Hh) H Eh(Hh) shows that dim(E7(Hh)) s 

dim(Eh(Hh)), and therefore dim(Eh(Hh)) = dim(E 2(Hh)). ? 

2.2. Proof of Theorem 2.1. To obtain Theorem 2.1, we now relate the "difference 

operator" Bh to the interpolation operator Ch = IhA X I Hh. 
This is done in 

LEMMA 2.2. The difference approximation Bh and the "interpolatory" approximation 

Ih Ax I H., satisfy the inequality 

II(Bh - IhA x) 4 1 < c] rhLxz - LhrhZ lh (c independent of h). 

Proof. To obtain the result, let eh = Bh4 - IhAx4. With z = Ax+, consider 

(h = rhLxz - Lhrhz, the discretization error associated with z, which can be written 

as rh(Lx - 2a)z - (Lh - 2a)rhz. Clearly, from ah E RN` one writes 

[Phah, 4Ih [Phrh(Lx- 2a)z, c] h - [Ph(Lh - 2a)rhz, 4]h, 

and therefore, using z = A x and the definition of Bh, 

['P+'kh ah(phrhz,) = [Phah,0kh, ah(Bh4 - IhAX4% k) [phah, Ih. 

Letting 4 = eh and using inequalities (2.4), one obtains the result. E 

Hence, if the discretization error is such that 

(N) lim sup I rhLxz - Lhrhz Ih = 0, 
h -0 ACGHh 

11+1k=I 
z=Ax42 

then Bh and Ch satisfy property (P), demonstrating clearly that Theorem 2.1 is a 

consequence of Theorem 2.2 and Lemma 2.2. The analysis of the convergence of 

a(Lh) depends on a well-known result of approximation theory. 

LEMMA 2.3. Assume q satisfies (Q)(2) (see Part 1); then 

IJAx4 - IhAx4 JIx < chI4 1. 

Here c is a constant independent of h and X. (11 11 x here is the H1(0, X)-norm.) 

Proof. One knows that IIAx - IhA x~4Ix is bounded by 

ch [ z"(x) 2 dxl , with c independent of h and X. 

Furthermore, using trivial energy inequalities directly related to the equation -z" + 

q(x)z = +(x), one finds 

{J Iz"'(x)I dx < c(M, a)(J 1I dx/ 

which yields the result. E 
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2.3. Corollaries for Bounded and Unbounded Domains. For bounded domains 
X = a, note that Ax = A; Lx = L. ac(A) includes only isolated eigenvalues of finite 
algebraic multiplicity. Furthermore, A is compact in L2(0, a). In this case, Lemma 
2.3 yields 

(2.8) (A - Ch)4I( A chI4AI 4 e Hh. 

Moreover, Hh is dense in H1(O, a); together with (2.8), this is sufficient, according 
to Descloux, Nassif and Rappaz [4], to have cI(Ch) satisfy (Al) and (A2). This 
immediately yields 

COROLLARY 2.1. Assume a difference operator Lh is chosen to compute the eigenval- 
ues of a differential operator L defined by Ly = -y" + q(x)y, 0 < x < a, y(O) = 

y(a) = 0; then a sufficient condition for c(Lh) to satisfy properties (Al) and (A2) is 
that 

lim sup I rhLz - LhrhZ lh = 0. 
h-0O ~PGHh 

11+1k= I 

z=A42 

Furthermore, property (Al) is satisfied for every isolated eigenvalue of L. 

For unbounded domains, our findings are based on Galerkin finite element 
approximation. Define first r: H1(0, ox) -- Hh, the a-projector, by the relation 

a(f, A) = a(,rhf, P), VP E Hh. 

Then 

Ah= rhA I Hh Hh -Hh 

is the Galerkin approximation. 
The following lemma is fundamental. 

LEMMA 2.4. The Galerkin approximation Ah = 'rhA I Hh and the interpolatory ap- 
proximation Ch = IhA X I Hh satisfy property (P). 

Proof. From the relation 

a((Ah - Ch)4, ) = ah(AX4 - IhAX+, ), V4A, E Hh, 

one obtains 

II(Ah - Ch) 4! < cllAx4 - IhAX4'l!X. 

Lemma 2.3 yields our results. D 
As a consequence one obtains 

COROLLARY 2.2. Consider the difference operator Lh used to compute the eigenvalues 
of the operator L defined by 

Ly = -y" + q(x)y, 0 < x < x, y(0) =0, y bounded. 

If Lh is chosen such that 

lim sup IrhLXz - Lhrhz |h 0, 
h-0O~~H 

11z=AI z=Ax42 
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then Lh satisfies (Al) and (A2). whenever the Galerkin approximation Gh = A- 
satisfies (Al) and (A2). 

This corollary enables us to use previous results obtained earlier for Galerkin 
approximations. In particular, by use of the Courant principle [2] and the notion of 
essential numerical range, Descloux [3] has clearly demonstrated that one obtains 
(Al) and (A2) for Galerkin approximations outside the essential numerical range (. 
In the particular case where q satisfies (Q)(l)-(Q)(3), t is exactly the interval 
[0, 1/y], which forms the continuous spectrum. 

Outside such an interval, A has only isolated eigenvalues that can be approxi- 
mated by the Galerkin method, and therefore by the difference operator Lh 
satisfying property (N). 

2.4. Verification of (N) for Numerov's Scheme. Using the notations of Lemma 1.6, 
we write Ah = rhLXz - Lhrhz for z = Ax+, 4 E Uh. 

We consider also the linear transformation in RN-1, Rh, represented by the 
tridiagonal matrix 

10 1 
0 

10 
1~ ~ 1 

12 . . 

0 1 10 

Note that 

(R hah) -( + 10z7 + z1 )/12 

+ (zI~- -2z, + z1+Jh, I < i <X1 

(Rhah ) can be found to have the following expression: 

(Rhah) = 1 [1 (X _ X)2Z..(x) dx - JI (X - X2Z,,,(X) dx 
2h 2 J1 x)z )d] 

1[x, xI 1 
+ 1[ z"'(x) dx -J z"'(x) dx] 

This leads to the following 

LEMMA 2.5. Assuming z"' E L2(0, X), one has 

X 2~ 1/2 4 
JRhahIh <- a0hj I/z"'/ dt) with ao = + 

Proof. Use standard arguments based on energy inequalities. Ol 
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On the basis of Lemma 2.5 one obtains 

LEMMA 2.6. Under the assumptions (Q)(1)-(Q)(3) one has 

lim sup I rhLxz - Lhrhzlh = 0. 
h- 0 +E=Hh 

z=Ax# 

11p1=1 

Proof. Since -z" + q(x)z = 4, 0 < x < X, differentiation yields z"' = q'z + qz' 
-4". Hence, 

{JX 2z 'l d}) s {fV (q~z)2dx} +( X (qz,)2dX1 

?{fX #2dX} 

From (Q)(l)-(Q)(3) one concludes 

IZ"IL2(0 X) < /1ZIL 2(O X) + MIZ' L2 (0X) + 4' IL2(0,X), 

Using standard energy inequalities, one may bound IZI 2(O, X) and IZ'IL2(0,X) in terms 

of 1' IL2(0 X) which leads to 

X 2 d1/2 
(| Z" IZ' dxl C11 +11 

Lemma 2.5 completes the proof, as all the positive eigenvalues of Rh are bounded 
independently of h. E 

This proves 

THEOREM 2.2. Under the assumptions (Q)(1)-(Q)(3), the Numerov scheme satisfies 
condition (Al) for every isolated eigenvalue of finite multiplicity, and (A2) for every 
compact set of the resolvent set t(L). 

2.5. Verification of (N) for the Central Difference Operator for the Regular 
Sturm-Liouville Operator. For the purpose on hand, we apply Corollary 2.1 to the 

difference scheme (1.12)-(1.13) for the approximate solution of (1.11). To complete 
our notations, let 

feG L 2(a, b), If =I { If~x)Idx} 

fe H1(a,b), lll = {If12 +If 12}1/2 

(NI' 1 1 i 1/2 

f heGR~ lfA h hl=(hfhl}I 

Moreover, the definitions of Subsection 2.1 with respect to Hh and RN- are 
maintained, and therefore relations (2.4) and (2.5) remain valid. To analyze the 
discretization error over the set of solutions z(x) of 

(2.9) -(q(x)z')' + s(x)z =p(x) (x), a <x < b, 
(2.9) 

z(a) = z(b) = 0, 
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where 4 E Hh, we use the following argument. Assuming p, s e H1(a, b), q e 
H2(a, b) and therefore z e H3(a, b), qz' e H2(a, b), one writes 

6h/2(q,86h/2Z1) (q(x)z')x=x, + h f (x - x,)(q(x)z')"dx 

(2.10) +2h2 [q, +1/2 (x - x1?72) z"'dx 

-qi - 1/2f (X - xi-1/2) Z dx]. 

If 

=h rhLz - Lh rh Z, 

then 

ahi -(q(x)z')x=x, + 6h/2(q6h/2z1), 0 < i < N. 

Using (2.10), one obtains by standard techniques the following lemma. 

LEMMA 2.7. Assuming z e H3(a, b), qz' e H2(a, b), the discretization error of the 
difference scheme (1.12)-(1.13) for (2.9) satisfies 

|rhLz - Lh rh Z I h y2 maxf{1,q} {21z"'1 + (qz ) ) 

Again, using energy inequalities, one bounds the right-hand side of Lemma 2.7 in 
terms of 4i 1, which leads to 

THEOREM 2.3. Under the assumptions of Lemma 2.7, the central difference scheme 
for the regular Sturm-Liouville problem satisfies condition (Al) for each eigenvalue, 
and (A2) for every compact set of the resolvent set. 

2.6. Condition (N) for a 2-dimensional case. Consider the problem of finding the 
eigenvalues of the differential operator L defined for a function u(x, y) by 

(2.11) Lu = -Au a 2I X 8 2 (xy)D, 

(2.12) u(x, y) = 0, (x, y) e aD, 
where 

D ={(xy)10 < x < a,O <y < b}. 
Define the spaces L2(D) with norm I I and inner product [, ], and H1(D) with 
norm 11 and innerproduct(, ) Let 

Hod(D)= { eH1(D)1 0 on aD}. 
With h = (h1, h2) e (0, 1) x (0, 1), define the discrete domain 

Dh= {(x, y) I x = ih1, yJ = jh2, 0 < i < M, 0 < j < N, i, j integers}. 

For uh {uhl,}0 l<MO . N define the five-point difference operator -Ah 
given for Uh: Dh -- R by 

(2.13) ((-Ahuh)l, = (2u, j - u111 - j)h2 

+ (2u1, - u111 - uij+)/h2 i, j E Dh, 

(2.14) Uh1I J = O i, j E aDh 
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(for simplicity we have written Uh i]j = ui j). (2.13) and (2.14) can be reduced to 

finding the eigenvalues of the operator Lh: RM-1 X RN-i RM-1 X RN. 

Let also 

Hh = {th E H'(D) n C(D) h = 0 on aD, 

4hh(X,y) = a + bx + cy + dxy,x,y e DijO s i < M,O j < N}, 

with Dij= {(x,y) E Dlxi x< xi+,,y y y?i+}. Hh is the well-known 
piecewise bilinear space. 

Note that Hh c Ho(D); furthermore, 4 e Hh, 4x E L2(D). On Hh consider the 
discrete norm I I h defined by 

M-1 N-1 128 

14'h= { E E hIh2Lip i 12 

i=l j=l 

induced by the discrete inner product 
M-1 N-1 

[',PIh = , hlh2CjfijS 
i=l j=l 

where 

Cij -h A(Xi I Yj), ij Oh -h(Xi I Yj); 

rh: H1(D) n C(D) RM-1 X RNI- is defined by 

(rhif )!i = f (xi, yj), O < i < M, O <j < N. 

Note that I - Lh can be considered as a norm on RM-1 X RN-1. Let ah be the 
discretization error, defined for z e C2(D) by 

lh (Z) =rhLz - LhrhZ- 

Our basic result is that Lh defined in (2.13), (2.14) satisfies condition (N). This 
will imply the stability results (A1)-(A2) for the 5-point difference scheme used to 
approximate the frequencies of vibration of the operator -A. This is summarized in 

THEOREM 2.4. We have 

lim sup I rhLz - Lhrhz 1h = 0. 
h -0 E+Hh 

11III=I 
z =Ax 

Several preliminary results are needed, which we simply summarize to avoid 
technical details. 

LEMMA 2.8. There exists a constant c independent of h such that 

cahIh < c(hi IzxxXX + h2 jzyyy + hlh2|Zxxxyl + h22hIIzYYYX I 

If z is the solution of -Az = e Hh, z = 0 on aD, then using Fourier analysis 
one proves that 

2 2 2 

(2.15) 2 2YY 
I 

2 

XXI J I4XYI IZVYYXI I4X 
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and by standard calculation on the subspace Hh one gets 

(2.16) 4Xy2 < -NP,, C independentof h. 

Combining Lemma 2.8 with (2.15) and (2.16), one obtains 

LEMMA 2.9. There exists a constant c independent of h such that 

IrhLz - Lhrhz < c(h2 + h2 + h, + h 

where 

-Az = EHh, z = 0 on aD. 

Consequently, one obtains Theorem 2.4. 
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